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Abshact We treat a one parameter family of quantum spin models, which are quantum-group 
invariant as well as pedodic in a certain sense, using Bethe states, We analyse ifs ground-sue 
properties and obtain the surprising result that its spin becomes non-zero depending on the value 
of the parameter. Finite-size corrections allow us to obWin the central charge which is also soin 
dependent. Relations to other models are mentioned. 

1. Introduction 

Integrable models are comerstones for checking theoretical ideas. They are central in the 
many relationships between the topological Chem-Simons model, knot invariants, solutions 
of Yang-Baxter equations, w m  models and aspects of conformal field theory. They led 
to the notion of quantum groups and to new ideas about symmetries. 

Asking for quantum-group invariant one-dimensional quantum spin models, we learnt 
from [l] that very special boundary terms have to be considered. They break translational 
invariance. It is a natural question whether one can form a closed chain and preserve the 
Uq(S.!/2) invariance. A construction of a Hamiltonian was proposed by [Z]. Couplings of 
nearest-neighbour spins in a quantum group invariant way is easily done and yields the 
XXZ model. Through an invariant coupling of the last spin with the first one, a 'non-local' 
boundary term is added. The resulting Hamiltonian, which we treat in this paper, is given 
by 

L-I 
H := ~q - C R ~  - R~ 

Ro := GRL-IG-' (1.1) 

i=l 

G := RlRz. .  . RL-I . 
It describes a spin chain of length L. To each lattice point a spin-4 degree of freedom is 
attached. Ri are 4 x 4 matrices giving a nearest-neighbour interaction 
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where p = (q + q-')/2, and q denotes the deformation parameter which becomes, at a 
later stage, a root of unity. Ris are a representation of the Hecke aigebra 

( 1.3) 
and therefore the quantum group invariance of (1.1) is evident. H commutes with the 
generators of U,(SUz) .  Special degeneracies are connected to this symmetry. In addition, 
there exists a generator G,  which is a substitute for the momentum. It shifts the Ris by one 
unit and maps Ro into R I :  

Rf = (4 - q-l)Ri + 1 RiRih~Ri = RiilRiRi*l 

GRiG-' = Ri+l RL := Ro i = I , .  .., L - 1. (1.4) 
To obtain (1.4). the Hecke algebra conditions (1.3) have been used. A straightforward 
consequence of (1.4) is that [G.  HI = 0. For q = 1, Ri becomes the permutation operator 
for lattice spins i and i + 1, Ri = Pi and RO exchanges the Lth spin with the first. Equation 
(1.1) then becomes the usual SU(Z)-invariant closed X X X  spin chain. 

Defining the unitary operator U by 

one has URi(q)U-' = -Ri(-q-') .  The Hamiltonian (1.1) therefore has the property 

UH(q)U- '  = - H ( - q - l ) .  (1.6) 
We intend to diagonalize (1.1) for q = ei9 being on the unit circle. In section 2 we show 

that the Bethe method works, although the Bethe equations have to be slightly modified. 
Special boundq  conditions result, which depend on the Bethe spin. In section 3 we analyse 
the ground-state properties of this chain. As a function of p or y = n - 9 an interesting 
phenomenon shows up. For 0 < y < a/2 the ground state has spin zero. At y = a / 2  
it becomes degenerate and for y > a12 the total spin of the ground state is non-zero and 
depends on y .  This property has been confirmed by diagonalizing small chains and by 
numerical methods and we conjecture it to hold for every finite chain. In section 4 we 
present the finite-size scaling behaviour which shows non-trivial dependence on y .  Finally, 
in section 5 we discuss some properties of related models. 

2. Bethe states 

We introduce a basis of the Z'-dimensional Hilbert space 'H = @U? in which the 
Hamiltonian (1.1) acts. Denote by 10) the ferromagnetic state with all spins pointing up and 
by In ] ,  . . . , nM) the state where at the positions ni a spin is pointing down, while all others 
point up. From equation (1.2) we have 

RilO) = q l O )  GIO) =qL-'lO) HIO) =O. (2.1) 
The Hamiltonian of our model commutes with the third component of the total spin operator 
J' and therefore the number operator counting down spins M = L/2 - 5' is conserved. A 
general vector I ~ M )  E 'H with M spins pointing down can be expressed as 

I*M) = *u(n l , .  . . , nM)lnl,. . . , n M ) .  (2.2) 

Equation (1.1) will be diagonalized using Bethe states for the wavefunctions in (2.2). We 
follow the standard strategy and determine first restrictions on +M. Let A be the coproduct 
of U,(SUz) which acts on the generators J*,  3' as 

I ( " ,  <n, ... 

(2.3) I' - I' A ( J * )  = 4-I' o J* + .I* o qJ1 A(q 1 - q  Qq.". 
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With the help of A'- defined iteratively by A"" = (A  @ id) o A" the representation for 
U,(SUz) in 7-l~ is given by 

J*=A' - (u*)  I' - - A'-(qc'/z), (2.4) 
For M = 1, the total spin is L/2 or L/2 - 1. States with spin L/2 - 1 are the highest 

AL(ut)I$) = 0.  (2.5) 

members of their spin multiplets and therefore satisfy 

Equation (2.5) yields the sum rule 

"4 

which has as solutions 

$I@) = constant x qnzn (2.7) 
where z is one of the L - 1 non-trivial Lth roots of unity with 2'- = 1, z # 1. Different 
mots distinguish different Uq(S&) multiplets with spin J = L/2 - 1. If we extend the 
range of definition of the function @I to all integers, we obtain from (2.7) the boundary 
condition 

+ L) = q ' - @ ~ ( n ) .  (2.8) 
We can equally well use quasimomenta k defined by e" = qz .  The allowed values of k are 
k;  = 2rri/L + p, where i = 1,. . . , L - 1. i = 0 would correspond to J-IO).  In order to 
solve the eigenvalue equation for (1.1) next we need the action of Rj and G on the basis 
of ?i': 

Ril j )  = q l j )  j # i, i + 1 (2.9) 
A straightforward calculation using (2.6)-(2.8) allows us to deduce the eigenvalues of G 
and H on I$]): 

Rili) = li + 1) + (q - q-')li) Rili + 1) = li) . 

GISI) = qL-3z l@~) Hl@i) = EI$I) (2.10) 

with Ei = Z(p - cosk;). Let us remark that for q = e'p the energy E; of the 'one particle' 
state I$) fulfils 

P P 
E; > 0 * (0 < - = - 

L 2s"; 
(2.1 1) 

In conclusion, the ferromagnetic state 10) has lower energy then the one particle highest 
weight states for this values of q!  

The calculation for general M is more tedious. We start again with the Uq(SUz) sum 
rule. States satisfying J+I@M) = 0 have spin J = L/2 - M and J 3  = J .  Application of 
J +  yields 

(2.12) 
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We shall try to satisfy this sum rule with the help of the ansatz 

(2.13) 

where the sum runs over all elements P of the permutation group SM. Quasimomenta ki 
are defined as before through t = e'k. Under the conditions that ti # q we obtain 

(2.14) 

where C denotes the cyclic permutation C(1,2, . . . , M )  = (2, . . , , M, 1) and P' denotes 
the transposition of neighbours in P: P' = (PI, 4,. . ., P~+I,  Pi, .... P,+,). Applying the 
first equation of the (2.14) M times, we obtain 

(2.15) L - MCL-ZMtZ) 
( f P ,  . . , t P , )  - q 

From combining (2.15) and (2.13) we obtain the boundary condition for @M: 

? ,bM(n2 , . . . ,nM,n l  +L)  =qL+'-'" @ M ( n l , . . . , n M ) .  (2.16) 

Next we study the action of the operator G and show that it is diagonal on Bethe states, 
GI@.+,) = rl@M). G applied to I @ M )  produces a state with components 

(2.17) 

The eigenvalue problem for G can now be solved by combining (2.13) and conditions (2.14) 
and (2.15). The corresponding eigenvalue r satisfies 

(2.18) 

( G + M ) ( ~  , f l Z + I , . . . , f l M + 1 ) = q M - 3 * M ( n Z , . . . , n M , L )  

( G + ~ ) ( n i  + 1,. . ., nM + 1) = qL-'-" @M(nlr . . . i n M ) .  

L - L(L-I)-ZMCL-M+I) r - -4  

Now we diagonalize the Hamiltonian. The energy eigenvalue equations can be written as 
M 

(2Mp - E)@M(nl?, . . , n M )  - @ M ( n l i .  ..,nk - j , .  . . , n M )  = o  (2.19) 
j = i l  t=l .n+.l+j  

where unwanted terms have not been included. They cancel if 

@ M ( n k  + 1 , n k  + 1,. , .)+ @M(nkpnk)-zp$M(nk+nk + 1) = o .  (2.20) 

Equations (2.19) and (2.20) have to be combined with the boundary condition (2.16). 
Inserting the ansatz (2.13) into (2.19) yields for the energy eigenvalues 

M 

E = 2 X ( p - c o s k i )  
i=I 

(2.21) 

where the kis have to be determined by the Bethe equations following from (2.20). 
Equations (2.13)-(2.16), (2.19) and (2.20) yield eigenfunctions for spin J = L/2 - M 
and J 3  = L/2 - M to eigenvalue (2.21). They are also eigenfunctions of the operator G 
with eigenvalues given by (2.18). 

We define in addition scattering phase shifts W k i ,  kj) by 

1 p sin& - kj)/2 
WS(k; + kj)/2 - p COS(k; - kj)/2 

O(ki. kj) = 2actan 
(2.22) 
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In this notation (2.14) becomes 

(2.23) 

and 

Ap. = - A p  e-iQ(kpr+~.kP,). (2.24) 
This equation can be iterated further. Taking into account that (2.23) and (2.24) hold for 
all permutations, we obtain the Bethe equations for ki which are in their logarithmic form 
given by 

M 

Lki + p(2M - L - 2) f O(ki,  k j )  = 2 n l i .  (2.25) 
j=l 

Where 1, are integers (half integers) if M is odd (even). 

3. Ground-state properties 

Westart from (2.25)andrelabel Vinterms of y = n-q,O < y 6 n, I: = Zi+L/2-M+1. 
Then 

M 
Lki =2IcrIy + y(2M - L - 2) - C O ( k i ,  k j ) .  (3.1) 

j=1 

For y = 0 OUT Hamiltonian coincides with the usual XXX Hamiltonian. The Bethe 
conslraints (3.1) coincide too. We expect therefore that the standard choice for the Bethe 
numbers: 

M - I  M - 1  
1: = - ( T ) ,  . . . , (?-) 

or 
M - l  M -  1 

ri = - ( T )  - I , .  . . , (1) - 1 

(3.2) 

(3.3) 

will still give the ground state for an interval in y .  We confirmed that the non-degenerate 
ground state is obtained in this way for 0 < y c 1112 in a number of cases. Numerical 
diagonalization was done for small chains with L < 10 and confirms that this is the non- 
degenerate ground state. A difference to the periodic XXZ chain shows up for y > s/2. 

We have a simple argument that already a! y = n/2 a degeneracy occm: O(ki. kj)  
vanishes for this point and the Bethe equations become Lki = 2n(l: - 4). In order to 
minimize the energy E = -2 xi cos kj, we choose the ki as dense as possible around k = 0. 
Since there are two zero-modes at k = f n / 2  two possibilities occur: either 

n K 2n 
2'"' 2 L  

k . - - -  _ _ _  for M = L / 2  I -  (3.4) 

(3.5) 

Both choices lead to the same energy. Therefore we obtain a degeneracy due to states at 
the band edge. Note that (3.4) and (3.5) can be obtained by choosing 1, according to (3.3). 

An exact diagonalization for N = 4 gives levels drawn in figure 1. The same has been 
done for the PasquierSaleur Hamiltonian [I]. In both cases J 3  = 1 results as the spin of 
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Y 

I I 
3 2.5 2 l.5 

phl 
0 0.6 1 

Figure 1. Dependence of the energy levels of the model (1.1) for L = 4. M = 2. E L  belongs 
to h e  U,(SU(2)) quintuplet. Ez. E3, Ea belong to Ihe h'iplets. Er and Ea me singlets. The 
ground-stue changes from the s sector inm spin s ai 'p = n/2r, 

the ground state if x / 2  < y < ~ 1 4 .  This is in striking contrast to the X X Z  chain with 
periodic boundary conditions. In this case a unique ground state is obtained for all values 
of y as it must be for all finite L according to a theorem by Affleck and Lieb [3]. 

A detailed analysis led us to the following. 

Conjecture. For any finite L (even), the total spin J of the ground state depends on the 
value of the anisotropy (0 according to 

K J = O  for - < ' p < ~  
2 

K JC 
J = s for - 

2(s + 1) < 'p -= - 2s 
L Ir 
2 L 

J = -  for o < p < - - .  

The ground state is non-degenerate (up to the mvial Uq(SUz) degeneracy). At the edges of 
the intervals, 'p = ~ / 2 s ,  additional degeneracies occur. 

In terms of Bethe numbers, the ground state belongs to the set (3.3) with M = L / 2  - s 
chosen according to (3.6). 

Evidence for the conjecture is given by diagonalizing small chains and solving the Bethe 
equations numerically for the special set of numbers Zi given in (3.3). In addition the 
finite-size analysis presented in the next chapter agrees with the conjecture. 

Let us now analyse the behaviour of our model in the thermodynamic limit L + 00. 
We shall essentially follow [4]. Changing variables from k to A and defining 

@&a) = Ztan-'[cotatanhh] (3.7) 

we have 

ki = @(hi, y/Z) O(k;,  kj) = -@(Ai - A j ,  y ) .  (3.8) 
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The Bethe constraints (3.1) now read 

As usual, we define a function Z(h, y )  by the left-hand side of (3.9): 

Introducing the density of roots ~ ( h )  := dZN(h, y)/dA which is independent of the shift 
2y (Z  + l), we obtain the usual integral equation for U, of the XXZ model with solution 
(see [4] for the details) 

The energy per spin e, = lim E L / L  is given by the expression 
1 

(3.1 1) 

(3.12) 

4. Finite-sue corrections 

It may he expected, that the peculiar features of the ground state will be reflected in the 
finitesize scaling behaviour of the model. Again, we follow the derivation of [4]. 

The deviation of the fmite chain from the thermodynamic limit can be described by 

eL - em = -2s sin y 

The kernel p(h)  is given by 

(4.3) 

Approximating the integrals in (4.1) and (4.2) by the Euler-Maclaurin formula, the system 
of equations relevant for the finite-size behaviour gives 

i :d*)dx = Z L W  - Z L ( A + )  (4.4) 

UL(h)dA ZL(-A-) - ZL(-OO) (4.5) 

(4.6) 
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I 

F i y c  2 e! -e ,  describes the difference between the energy per site of the finite chain and the 
thermodynamic limit calculated numeriwlly from the Bethe equations. (e; -e&- describes 
the same quantity as predicted from the analytical formula (4.11). The ntio is plotted for three 
different values of 9, We see that the agreement between these two approaches increases with 
the length of thc chain. 

where A+ (A-) denote the maximal (minimal) root A of the Bethe equations given in (3.9). 
From the definition of ZL@, y )  we obtain 

1 r p  s 
Z'(00) 

Z,(-W) 

- - - - - 
4 nL 2L 

1 rp s 201s -- - - + - - - 
4 nL 2L RL 

1 s  3 ZL(A+) = - - - - - 
4 2L 2L 

1 s  1 z L ( - A - )  = -- + - - - 
4 2L 2L 

and 

(4.8) 

(4.9) 

Using equation (3.3). we obtain for @* 

@+ = -2y @- = - 2 y ( l + 2 ~ )  + 4 ~ .  (4.10) 

From equations (4.6), (4.7), (4.9) and (4.10) the finitesize correction to the energy can be 
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computed and is given by 
n' sin y 3 eL - e ,  
6L2 y [ I -  4n(n - y )  

Remember that y and s are linked by (3.6). Defining c by eL --e, = -(n2/6L2)(sin y / y ) c  
we see that the conformal anomaly of the model (1.1) can be expressed by 

(4.12) 
6 

nrp 
= 1 - - [(n - rpy - 2p(n - rp) + 2s2p7 . 

For 0 c y < a /2 ,  (s = 0). we recover the usual conformal anomaly 

(4.13) 

In particular, for y = x / m  with m = 3 , 4 ,  . . . , c belongs to the unitary series c = 
1 - 6/m(m - 1). We expect that the Hamiltonian (1.1) gives (after rescaling by a factor 
n2 sin y / y )  a conformal field theory in the thermodynamic limit. 

Note that in the region of y where non-zero spin states appear as ground states, we 
have c < 0 and therefore the model will not correspond to a unitary representation of the- 
Viasoro algebra 

Finally let us make some remarks about the expression (4.12). The energy difference 
of states with spin s and spin s + 1 follows from (4.12) and is given by 

(4.14) 

This function has zeros precisely at the boundaries of the intervals rp = rr/(Zs + 1) given 
in the conjecture (3.6). Both states become degenerate at these points. The state with spin 
s + 1 becomes more stable (e; - e;+' > 0) for rp < x/2s as predicted by our conjecture. 

5. Relations to other models 

As we said at the beginning of this paper our aim was to study a quantum group invariant 
model which is also periodic on a lattice with L sites. It is therefore interesting, but not 
surprising, to remark that this model can be obtained in various other ways. It was obtained 
in [SI following a Hamiltonian approach to quantize the ChernSimons model on a cylinder. 
The model was also discussed in [6J, although their notation was slightly different. In [6] 
the algebraic nested Bethe ansatz has been worked out. We would also like to mention, that 
the form of the last contribution to our Hamiltonian Ro is dictated by requiring covariance 
under quantum group transformations [7]. 

It is known [9,11], that the XXZ mode1 with toroidal boundary conditions is related 
to various other models of statistical physics with c < 1.  The natural question is, what the 
corresponding models are in our case. In fact, the mapping can be based on the observation 
[lo, 121, that the Hamiltonians can be expressed in terms of different representations of 
the Temperley-Lieb algebra. This is the case, for example, for the periodic XXZ chain 
of 2L sites for q = emI4 and the king model for L sites or for the periodic XXZ chain 
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at q = eix/' and the L-site 3-state Pons model. We shall follow the same idea. We 
rewrite our Hamiltonian in terms of Temperley-Lieb generators. Then we shall explore 
the same expression but in the representations which are known to be appropriate for the 
king or Potts model. To be more specific, we start fiom the already mentioned fact, that the 
Hamiltonian of our model can be written in terms of Temperley-Lieb generators ei = q- Ri, 
i = 1,. . . , L - 1. The representation is defined with (1.2). The non-local boundary term 
becomes 

q - Ro = q - G(q - eL-I)G- I 

G = (q -el). . . (q - e L - 1 ) .  (5.1) 

We shall choose q = 
known representation of eis: 

or m = 3, c = which fits with the king case and take a well 

(5.2) 
3 1 1 

fi(l +utui"+J ezj = - ezj-1 = -(1 +ui 1. f i  
After a straightforward calculation we obtain the Hamiltonian 

(5.3) 

where the 'boundary term' e2L calculated again according to (5.1) becomes 

(5.4) 

This means, that according to the two possible eigenvalues (-1)Y, y = 0, 1 of r we deal 
either with periodic or antiperiodic boundary conditions: 

3 3  1 
e2L = -(1 +up$) r := -U] ... U'. 

f i  

U:+] = (-1)yu;. (5.5) 
Within this model definite boundary conditions are prescribed for a particular sector. We 
expect that the two models have related spectra. Indeed we have checked numerically for 
L = 2 ,3  (the first case of course can easily be solved analytically) that the Ising spechum 
is contained in the spectrum of the XXZ Hamiltonian. 

We are quite familiar with a string-like r from the Jordan-Wigner transformation. 
Applying it to (5.4) yields a fermion Hamiltonian 

with antiperiodic boundary conditions CL+I = -cl for L even. 
we  may illustrate these remarks next for m = 5 or q = The 3-state Pot& model 

fits to the Conformal charge c = :. The appropiate representation of the Temperley-Lieb 
algebra becomes 

1 1 
ez j  = -U + r,rI+l + r j r j + , )  ezi-1 = -(I + U j  +U+) J 45 45 

0 0 1  (5.7) 

0 1 0  
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with u r  = oro , c3 = r3 = 1. The resulting Hamiltonain is 

411 1 

2N-1 ZN-l  N-1 N 
HO = - ej = -- C(rjr:+, + rjirj+l) + + o j )  - - , (5.8) 

j = l  43 j = l  j=1 43 
The boundary term H’ = - q N ,  which is added to Ho yields the total Hamiltonian 
H = Ho + H’, given explicitly as 

H’ = J- (I + MrlrL + r i rNMt)  (5.9) 

where M = U ,  . . . U N .  The operator M has eigenvalues 1, o and o2 and therefore we again 
obtain a model with boundary conditions 

rN+ l  = w y r I  y =n, i , 2  (5.10) 
depending on the sector corresponding to the eigenvalues of M. As in the previous case, 
we have checked for L = 2 , 3  that the Potts model spectrum is contained in the spectrum 
of the X X Z  chain. 

The relation between the twisted 2L-sites XXZ model ‘and the 3-states periodic Potts 
model for L sites was found in [lo] but only for the ground-state sector. Now we have the 
generalization of the previous statement without the limitation to the ground-state sector. 

In summarizing, we diagonalized a one parameter family of Hamiltonians of a quantum 
group invariant and periodic model. We obtained a sequence of ground states with increasing 
spin. These transitions resemble the incommensurate transition obtained in various other 
models 1131. 
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